

Discriminating Dispenser Sump/STP Sump Sensor

Smart Sensor Equipped with Intellisense™ Technology

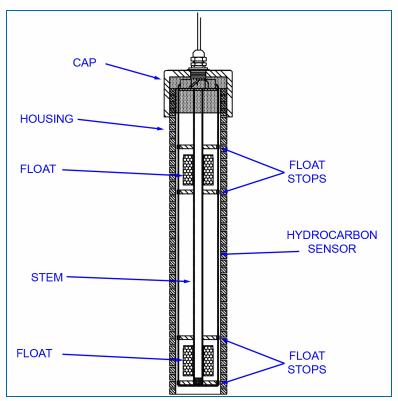
30-0232-DH-10 & 30-0232-DH-20

Description

IMPORTANT: This float body is the same as the 30-0232-D10 / D20 and 30-0232-D-10B / D-20B. Look at the label to make sure you have the correct sensor for the applicable function.

The primary function of the Discriminating Dispenser Sump/STP Sump Sensor is to sense liquid hydrocarbons and water in sumps, fuel dispenser pans and other locations where there is liquid that could indicate that a leak has occurred. Use the DH-10 on fuel dispenser pans and transition sumps. Use the DH-20 in tank sumps.

The sensor has a strip made of a carbon/polymer material that changes its electrical resistance when it is touched by liquid hydrocarbons.



Sensor with Carbon/polymer Strip

Two (2) float switches are used in the body of the sensor to sense low and high liquid levels. If there is a break in the cable it will cause an alarm condition in the system.

Cutaway View of Sensor that Shows Internal Floats

Specifications	
Primary Use(s):	DH-10: Fuel Dispenser Pan/Sump DH-20: STP Sumps
Alternate Uses:	DH-10: STP Sumps DH-20: Fuel Dispenser Pan/Sump
Detects:	Low Liquid, High Liquid, Fuel
Operating Temperature:	-40°C to +70°C (-40°F to 158°F)
DH-10 Dimensions: DH-20 Dimensions:	Diameter: 5.8 cm (2.3 in.), Length: 28.2 cm (11.1 in.) Diameter: 5.8 cm (2.3 in.), Length: 53.6 cm (21.1 in.)
Float Requirements:	Low: 3.8 cm (1.5 in.), High: 27.9 cm (11 in.)
Nominal resistance (uncontaminated)	Less than 5,000 ohms
Nominal resistance (contaminated)	More than 30,000 ohms

Specifications		
Cable:	Belden #88760 or Alpha #55371 3.6 m (12 feet) of gas & oil resistant cable to the inline ISIM + 1.3 m (4 feet) ISIM tail	
Maximum Wiring Length*:	305 m (1,000 ft.) field wiring	
Alarm Threshold Configuration:	Fully Automatic	
Diagnostic Reading on sensor setup:		
Clean Carbon/polymer (no Hydrocarbon)	12 to 13 (normal), 3 to 4 (lower float in alarm - raised), 1 to 2 (upper and lower float in alarm - raised)	
Belcor Active (Hydrocarbon present)	3.5 to 3.7 (normal), 1.8 to 2.0 (lower float in alarm - raised), 1.2 to 1.4 (upper and lower float in alarm - raised)	
Multi-Drop Restriction	ProGauge / Integra: 12 on each I.S. barrier channel (48 total per barrier) Nano: See Mixed Multi-Drop Installation in the M2010 Nano Installation Guide.	
Connections:	Red = Power, Black = Signal, Shield = Ground	

NOTE: *This is the maximum length of wire to be used to connect all sensors on one channel. This length includes the wire from the VSmart to each sensor board in the string.

Installation

WARNING: Make sure you read and fully understand the warnings and information found in the **Hazardous Areas** section of your console's Installation Guide before you install or do the servicing of this sensor.

IMPORTANT: This Smart Sensor must ONLY be connected to a ProGauge or OPW Fuel Management Systems 12V VSmart Module. This will make sure that operation conditions are safe.

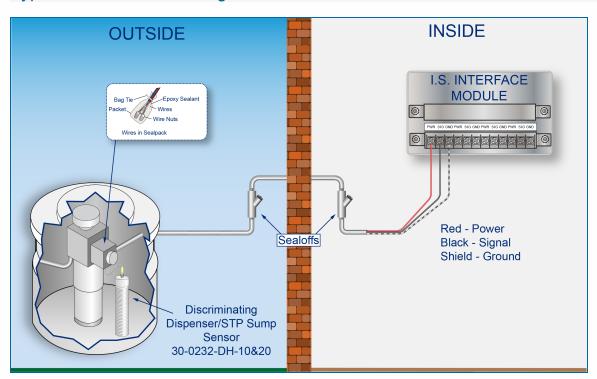
CAUTION: ALWAYS obey Local and National Electrical Codes applicable to the installation location.

Make sure that the cables from the field wiring to the controller are in conduit that is dedicated to intrinsically safe wiring.

Use wire-nuts and epoxy-resin seal-packs for field connections (refer to M00-390008 Waterproof Electrical Connections for information).

IMPORTANT: This sensor can only be used with a 12V IS Module. Sensors can be connected in parallel up to a maximum of 12 sensors on each channel (48 total on each barrier). This Sensor CANNOT be connected in parallel with devices other than Smart Sensors. It cannot be mixed with non-Smart sensors.

- This sensor uses ONE I.S. Module position
- Start with the Connections table and "Typical Installation" drawing below.
- Make sure the sump pit or pan is dry.
- Install the sensor so that it touches the bottom of the sump pit or pan.
- Connect the sensor cable to the sensor.
- Connect the sensor wires to the field wires in the junction box. Use the supplied cable gland and silicon wire nuts.
- Seal the electrical connections with the epoxy seal packs (refer to M00-390008 Waterproof Electrical Connections for instructions).
- Install explosion-resistant sealing fittings at both ends of the conduit. Refer to the Probe-Cable Seal-offs section of the console's Installation Guide for instructions.


Connections

Sensor Wire Color	12V Smart Sensor Interface Channel
Red	Power
Black (hydrocarbon sensor)	Signal
Shield (or 3rd conductor)	Ground

Typical Installation Drawing

Controller Setup

The sensor must be **Auto Detected** on the console. Alarm thresholds are configured automatically through the *Intellisense* mechanism between the sensor and the console.

Float Sensor Test

CAUTION: Use caution to prevent dangerous conditions when you do work in a hazardous area.

Make sure that the area has sufficient airflow when you do a test or remove contamination from the sensor. Make sure there are no open flames or hot surfaces near the work area.

Sensor installed in a normally dry well

- Put the float in the HIGH position. This will cause an alarm condition in the controller.
- Put the float back in the LOW position. Make sure that the controller is not in an alarm condition.

Sensor installed in a normally wet well

- Put the float in the LOW position. This will cause an alarm condition in the controller.
- Put the float back in the HIGH position. Make sure that the controller is not in an alarm condition.

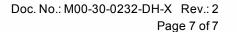
If the controller does not sense the alarm conditions simulated by these tests, look to see if the thresholds and alarms are correctly programmed in the system. Look to see if the float is in the correct position (refer to the applicable instruction above). A sensor or wiring fault will cause a system alarm. Do a continuity test in the wiring and junction boxes. Make sure there is continuity with no short circuits.

Hydrocarbon Sensor - Functional Test and Remove Contamination

IMPORTANT: It is recommended to only do the procedures below when it becomes necessary and only as a last alternative. These procedures can cause a decrease in the original electrical resistance of the polymer. If possible, speak with a certified ProGauge technician before you do these procedures.

NOTICE: Do not use fuel (gasoline, diesel etc.) to test or clean the sensor! Once the carbon/polymer material has touched liquid hydrocarbon, it is possible that the sensor will not return to its initial electrical resistance. This can have an unwanted effect on its operation. Replace the sensor if necessary. If you do not obey this instruction it can void your warranty.

Functional Test - Hydrocarbon Liquid Sensor of the Device


- Put the polymer fully into Mineral Spirits and wait approximately 10 minutes.
- Remove the sensor and let it hang to air dry for another 10 minutes.
- The test is satisfactory if an alarm condition or other event related to the hydrocarbon part of the sensor occurs. If the test results are unsatisfactory, replace the sensor.

Functional Test - Water Sensor of the Device

- Put the end of the sensor fully into TAP water for at least two (2) minutes.
- The test is satisfactory if an alarm condition or other event related to the water sensor of the device
 occurs

Clean the Hydrocarbon Sensor of the Device

- Make sure the sensor is disconnected.
- Put the contaminated portion of the sensor fully into Denatured Alcohol for one (1) hour.
- Flush the sensor with water to remove all remaining contamination.
- Let the sensor dry in the air for one (1) hour.
- Reconnect the sensor.

NOTE: If the sensor does not return to near its original resistance after you do a functional test or contamination has been removed, it is recommended to replace the sensor.